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Cannibalism Can Be Beneficial Even When
Its Mean Yield Is Less than One
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Two types of adult-on-juveniie cannibalism are discussed and differentiated: those with
“mean yield of cannibalism’ greater than one, and those with mean yield less than ene. Two
extant modeis-one continuous and one discrete-—in which cannibalism is beneficial only when
the mean yield exceeds one are reviewed and compared. The discrete mode! is modified and
analyzed to demonstrate that cannibalism can be beneficial even when the mean yield is /ess

than one. © 1997 Academic Press

1. INTRODUCTION

Cannibalism occurs in many contexts across a wide
spectrum of taxa [6-8, 17]. Several models in the
literature have demonstrated circumstances under which
cannibalism can enable a population to remain viable
when it would otherwise become extinct [ 1-5, 9-11, 13,
16, 18].

Some models, e.g. [2, 18], have been used to
demonstrate the beneficial results of adult-on-juvenile
cannibalism when puveniles have access to a (constant)
resource unavailable to adults. When adult resource is
too low to support a noncannibalistic population, the
adults can indirectly utilize this extra resource through
cannibalized juveniles. ‘

On the other hand, biologists believe cannibalism can
also be beneficial if adults and juveniles utilize the same
(variable) resource [ 7]. In this case cannibalism can be
used by adults during times of low resource to redirect
reproductive effort until a time of higher resource.
Although these two modes of cannibalism by no means
exhaust the ways in which cannibalism can benefit a
population, the focus of this paper is on these two types.
Two models of the first type of cannibalism will be
reviewed, and a model of the second type will be presented.

First, however, we need a modelling concept which can
differentiate between these two modes of cannibalism.
We find such a concept in the work of Van den Bosch et
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al. { 18]. They define the mean yield of cannibalism to be
the expected number of new juveniles produced due to
the cannibalization of one juvenile at low population
density. The mean vield is the number of new juveniles
which arise from and replace one cannibalized juvenile.
In general the mean yield depends on parameters and
submodels such as juvenile and adult resource levels,
juvenile and adult survivorships in the absence of can-
nibalism, the expected energetic content of a juvenile,
and energy-to-offspring conversion factors.

If juveniles utilize a resource unavailable to adults,
then the mean vyield at low (adult) resource levels can
exceed one because of this extra energy source. If, on the
other hand, juveniles and adults utilize the same
resource, then the mean yield must be less than one at
low resource levels by energetic considerations. In par-
ticular, if in a given model juveniles and adults utilize the
same resource and the mean yield is independent of
resource level (as it is for the sake of simplicity in many
models), then the model parameters should be such
that the mean yield is less than one; otherwise at zero
resource level canmibalism could create a perpetual
motion machine.

This paper (1) clarifies the usefulness of the concept of
mean yield in modelling cannibalistic populations;
{2) reviews a continuous model and a discrete model in
which cannibalism is beneficial only when the mean yield
exceeds one; and (3) modifies the discrete model by
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means of a variable resource and demonstrates can-
nibalism can be beneficial even if the mean vield is less
than one.

2. MEAN YIELD IN THE
VAN DEN BOSCH ET AL. AND
CUSHING MODELS

Van den Bosch e af. [ 18] analyzed a continuous age
structured adult-on-juvenile cannibalism model with
constant resource in which the mean yield was allowed to
exceed one. They showed that a branch of positive equi-
libria bifurcates from the trivial (zero) equilibrium at
inherent net reproductive number r = 1. The trivial solu-
tion is locally stable for r < 1 and unstable for » > 1. They
furthermore showed that the branch bifurcates subcriti-
cally exactly when

ez (D

AZ)

where {, i, and Z represent the conversion efficiency of
ingested energy to the production of new juveniles, the
expected energy gain from cannibalizing one juvenile at
low adult density, and the rate of energy intake per adult
of extraneous (adult) resource, respectively. Y depends
on the cannibalization preference distribution, the
juvenile energy content distribution, and the juvenile sur-
vivorship. —f"(2)/(Z) can be interpreted as the expected
increase in adult lifespan due to one cannibalization,
where f'is the per capita adult death rate with /*(2) <.
They defined the mean yield to be

wriz( =),

Az

the sum of the new juveniles immediately resulting from
one cannibalization and the new juveniles resulting from
consumption of extraneous (adult) resource during the
additional time lived by the cannibal.

Therefore, van den Bosch et al concluded that the
branch of equilibria bifurcates subcritically exactly when
the number of new juveniles resulting from the can-
nibalization of one juvenile exceeds one (i.¢., when the
mean vield exceeds one). In some cases the branch bends
back to the right, affording (expectedly stable) equilibria
for the cannibalism model in the region r < I where non-
cannibals cannot survive. Thus cannibalism can allow
the population to survive when it would otherwise go
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extinct. This benefit of cannibalism occurs, however, only
when the mean vield exceeds one.

Cushing [ 2] analyzed the dynamics of a discrete adult-
on-juvenile cannibal model with constant resource.
Although Cushing did not describe the dynamics in
terms of mean yield, his results admit comparison with
those of van den Bosch ef al.. The scaled version of the
model he analyzed is:

His1)=r 'f(A(m+§ VA BUD) | 40)
A+ 1) =[] —cP(AW) $H)] (0
where

B(y=¢(J)J, P(d)=y(d) pA
0<flA)<1, fl0)=1, f(4)<0, fleo)=0
O<d(N <, ¢0)=1, ¢(J)<0,
D) >0, P(0)< oo

0<sPAY<l, W0)=0, {4)>0, P(ow)=l

r = ple;p is the inherent net reproductive number, where
P, &, e;, and p are the probability that a juvenile will
mature in the absence of cannibalism, the energy-to-new
juvenile conversion factor, the average energetic content
of a juvenile, and the resource level, respectively. The
coefficient ¢ indicates the strength of the cannibalism
interaction, f(4) represents the fractional decrease in
resource consumption per adult due to intraspecific com-
petition, and ¢¥(4) ¢#(J) is the probability that a juvenile
will be cannibalized when the population consists of pA
adults and J juveniles. Cushing showed that, in the
absence of cannibalism {¢=0), a branch of locally stable
positive equilibria bifurcates supercritically from the tri-
vial solution at r = 1, At low resource levels the introduc-
tion of cannibalism can increase the equilibrium levels
and thus raise the bifurcating branch; this can be con-
sidered a benefit of cannibalism. Numerical simulations
gave examples where further increases in the degree of
cannibalism cause the bifurcating branch to become sub-
critical and “bend over,” resulting in an unstable lower
branch and stable upper branch. In this case, can-
nibalism can allow the population model to equilibrate
in a parameter region to the left of the bifurcation point
{where in the absence of cannibalism the population can-
not exist). This is another manifested benefit of can-
nibalism in Cushing’s model. Under what conditions on
the mean vield do these benefits occur?
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Cushing showed that the condition for subecritical
bifurcation is {with corrected typographical error)

(1-2:) e~ r) <0

which can be written as

o1 L@

‘ c(0)

In order to compare Cushing’s results with those of
van den Bosch et al, note that the analogous “mean
yield” in this model is {e;. The condition for suberitical
bifurcation in Cushing’s model differs from that in the
van den Bosch er g/, model for three reasons. First, the
density dependence in the recruitment term of Cushing’s
model, absent in the van den Bosch et al. model, has the
effect of lowering the equilibrium branch from what it
would be in the absence of density dependence, and
introduces the positive term — f'(0)/(¢¥'(0)}. Second, in
Cushing’s model cannibalism does not increase the adult
cannibal’s lifespan, and so only immediate recruitment
due to cannibalism is counted in the mean yield. Third,
the mean yield in Cushing’s model does not explicitly
depend on juvenile survivorship because survivorship to
the juvenile stage 1s implicit in the conversion factor ¢,

Thus, in the Cushing model, suberitical bifurcation
occurs only if the mean yield is greater than one.
Moreover, if the mean yield is less than one {and hence
the bifurcation is supercritical), then #/p<1 and so
Cushing’s Theorem 7 shows that the introduction of can-
nibalism for r close to one decreases equilibrium levels.
Therefore, with respect te the equilibrium levels near
r==1 and the direction of bifurcation, cannibalism is
beneficial in this model only when the mean yield exceeds
one.

Thus, in both the van den Bosch et al. model and the
Cushing model, cannibalism is beneficial only when the
mean yield exceeds ome. Adults can indirectly utilize
resources that are available only to juveniles, and this
sometimes allows the population to survive when the
{adult) resource is too low to maintain the noncan-
nibalistic population.

3. WHEN THE MEAN YIELD IS LESS
THAN ONE

In this section, a nonautonomous version of Cushing’s
cannibalism model is analyzed under the assumptions
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that {1} juveniles and adults utilize the same resource (so
the mean vield is required to be less than one); and
(2) the resource level is variable and in fact dips to zero.
It will be shown that cannibalism also can be beneficial
in this situation.

Consider the following variation on Cushing’s {un-
scaled) discrete adult-on-juvenile cannibalism model:

x(t+1)
ax(t) 1
(a+ﬂnﬂi+ﬂnjy“)
(1)

= Butpto = 45e

wt+1)

_ _ a W) )
‘p[‘ %a+ﬂnul+ﬂnd““)
By, dae(0,0); ¢ pel0,1]

y=< 1.

x(r) and p(r) denote the number of juveniles and adults,
respectively, at time ¢, f is the reproductive conversion
factor that gives the number of new juveniles per unit
resource, p(?} is the level of resource at time 7, and
[0, 00} —= [0, o) is the per capita adult resource
uptake per unit time and satisfies

w(=0 and «'(p)>0 forall p=>0

The reproductive conversion factor y gives the number of
new juveniles per cannibalization, and p represents the
probability that a juvenile will mature in the absence of
cannibalism. '

M)
a+x(t} 1+ (1)

is the probability that a juvenile will be cannibalized, and
¢ is the “cannibalism coefficient” which indicates the
strength of the cannibalism interaction.

In general one would expect p to be an increasing func-
tion of p and ¢ to be a decreasing function of p; for sim-
plicity p and ¢ are assumed constant. As in Cushing’s
model, the unit of noncannibalistic resource is defined s0
that it supplies the same energy as one cannibalized
juvenile; hence

B=7.

Since we are assuming juveniles and the adults utilize
exactly the same resource in the cannibalism model (1),
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FIG. 1. a The juvenile component of the atiractor as a function of net reproductive number # A branch of positive equilibria bifurcates supercriti-
cally from zero at r = |. The branch losss stability at r = ¢ when the eigenvalues pass through +/, and bifurcates into a 4-cycle {see Fig. 1b). In this
simulation a=1, ¢=0, f=08,d=03, p=1. b. Juveniles as a function of time. The attractor is a 4-cycle with range of cardinality two. In this time

series r=88,a=1,¢=0, /=08, d=03,p= L.

it is necessary 1o require that the mean yield be less than
one:

Byl

When ¢ =0, the cannibalism model {1} reduces to the
noncannibalism model

x(t+ 1) =fu(p(1)) e~ p(2)

(2)
vt 4+ 1y =px{(8).

When p is constant, Cushing’s results show that can-
nibalism is not beneficial because the mean vield is less
than one. His resulis can be summarized and expanded
into the following two remarks [27. Let r= Bu(p) p.
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Remark 1. When ¢=0, the trivial {zero) solution of
{2) is globally asymptotically stable if r < 1 and unstable if
r>1. There exists a positive equilibrium {(1/pd) Inr,
(1/d)Inr) of (2} if and only if r > 1; this equilibrium is
unique when it exists and is locally asymptotically stable
when 1 <r<e? (See Fig. 1. See Appendix for proof.)

Remark 2. When ¢ >0, the trivial equilibrium of the
cannibalism model (1) is stable if ¥ <1 and unstable if
r > 1. There is a supercritical bifurcation of positive equi-
Hbria at r=1, and a supercritical bifurcation of syn-
chronous 2-cycles at r=1. Near r = 1, the positive equi-
libria are stable if f> 1 —d/c, in which case the 2-cycles
are unstable; and the positive equilibria are unstable if
A< 1-dfc, in which case the 2-cycles are stable,

total poputation
)

FIG. 2. a. The juveniie component of the attractor as a function of net reproductive number r with ¢=9 and ¢ =04. The introduction of can-
nibalism fowers the equilibria for r> 1 near r= 1. In this simulation a = {, f=08, d=03, p= 1. b, Total population size attractor as a function of
net reproductive number » with ¢ =0 and ¢ = 0.4. At larger value of r, the cannibalism can increase equilibrium levels. In this simutation a =1, f=0.8,

d=03,p=1
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Figure 2 cotapares the bifurcating branches of the non-
cannibalism model and the cannibalism model. As
demonstrated in the Introduction, the advent of can-
nibalism lowers the equilibrium level at small population
sizes {(Fig. 2 also suggests, however, that cannibalism
may increase equilibria levels at larger population sizes.)

In order to see that cannibalism can be beneficial when
the mean yield is Jess than one, consider a simple
modification of Cushing’s model in which the resource
dips to zere for two consecutive time steps. Let p be
defined as the Heaviside function

0 ifo<gigl
f = — frved
plt)=MH{1=2) {Mﬁt>1
It is henceforth assumed that

u(p)=p.

In this case all sofutions of the noncannibalism model
{2) become zero in finite tite; the noncannibals cannot
survive if the resource vanishes for two consecutive time
steps. Positive initial conditions for the cannibalism
moedel (1}, however, produce x(2), y(2) >0, and these
can be considered the initial conditions for the can-
nibalism model (1) for ¢ > 2 with resource fixed at p = M.

TaeoreMm 1. If p(t) = MH(t - 2), then

(1) all solutions of the noncannibalism model (2) are
zero in finite time (1 2 2);

(2} the trivial solution (0,0Q) of the cannibalism
model (1} is stable if v <= BMp < 1 and unstable if v > 1,
and

(3) when r=>1 the cannibalism model (1) is in fact
“uniformly persistent” with respect to the extinction state
in the special sense that there exists & > 0 such that for all
x(0), ¥(0) >0, liminf, _, . [(x(2), y()l > e

Proof. Let p(t)=MH{t—2} in the cannibalism
model (). Note that x(1), #{1), x(2), and p{2) can be
made arbitrarily small provided x(0) and »{0) are chosen
sufficiently chose to zero, and that x(2) = p{2) =0 if and
ouly if x(0) =0 or p(0)=1.

Let r= fMp <1 and ¢> 0. Since (0, 0} is stable for the
maodel with p(¢) = M, there exists a § with 0 <5 <& such
that whenever |[{x{2), ¥(21}l <6, we have [|(x(¢), v(£)] <e
for all r=2. Also, there exists y>0 such that
H(x(2), ()| <d<e for t=1, 2 whenever [[(x(0), p(0))] <y
Thus, the trivial solution is stable when r < 1.

Let r > 1. The eigenvalues of the linearization at (0, 0)
of the model with p(r) = M are iﬁ, and s0 (0,0)is a
repellor for ¢ 22 by the Stable Manifold Theorem for
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maps [ 12]. Thus for some ¢>0, for all (x(2), ¥(2))#
{0, 0), there exists 7> 2 satisfying [|(x(1), 1)} > ¢ for
all 1= T Since (x(2), ¥(2}) # (0, 0) whenever x(() >0
and {0} >0, {0, 0) is unstable, and in fact for all x(0),
¥(0) >0, lim inf, _  [{x(1), (DI >¢. B

This simple nonautonomous modification of Cushing’s
model definitively shows that, even when the mean yield is
less than one, cannibals may be able to survive times of low
resource while noncannibals cannot. In the next section, an
example is presented in which the resource is allowed to
fluctuate periodicaily.

4. EXAMPLE

In Section 3 it was shown that a cannibalistic popula-
tion {even one whose mean vield is less than one) can sur-
vive a single catastrophic drop in resource abundance
that would wipe out a noncanuibalistic population. In
this section it is suggested, by means of an numerical
study, that such a cannibalistic population can in fact
survive indefinitely in the face of répeated, periodically
occurring, resource abundance drops.

Consider model (1) with a P-periodically forced
resource defined by the first period

([0 Hosis]
PO M it 1<t<p—1

where amplitude M >0 and period Pe{3,4,...}. It
seems reasonable that the cannibalistic population might
survive periodic resource dips provided the recovery times
are sufficiently rich in resource and sufficiently long, ie.,
provided M and P are sufficiently large. Given a fixed
finite period P, one would in general expect a branch of
positive P-periodic solutions of the cannibalism model
{1) to bifurcate from zero at a critical value of M, with a
typical exchange of stability between the trivial solution
and the bifurcating branch [14]. The existence and
stability of such solutions would imply the possible per-
sistence of the cannibalistic population in a P-periodic
state. However, bifurcation theory does not apply at
x= y=0 since the linearization of the Pth composite
map has two zero eigenvalues; indeed, the trivial solution
never loses local stability.

In order to look numerically for P-periodic solutions
of the cannibalism model (1), one can fix P and vary M
as a bifurcation parameter. Figure 3 shows simulations in
which P=4. Stable 4-periodic solutions of (1) exist for .
large enough cannibalism coefficient ¢ and sufficiently
large values of M. Figure 4 shows the trade-off between
M and P with P=5 and P=6. The larger the period P,
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FIG. 3. a The juvenile component of the attractor as a function of Af when P =4. Locally stable 4-cycle sclutions exist for sufficiently large M
but the zero sotution is always locally stable, In this simulation e =1, c =04, #=08,d =03, p= |, P=4. b. The juvenile component of the atiractor
as a function of ¢ when F=4 and M =T70. Locally stable 4-cycle solutions (see Fig. 3c) exist for sufficiently large ¢ but the zero solution is always
locally stable. In this simulation a=1, f =08, d=03,p=1, P=4, M =70.

series =1, =06, =08, d=03, paz 1, P=dg, M =70,

the smaller M need be in order to allow survival of the
population.

In general an analytical investigation seems difficult
since (1) linearization of the composite map about zero
yields the zero matrix, rendering standard bifurcation
theory inapplicable; and (2} computation of the equi-
librium equations for the composite maps and their roots
appears intractable. Therefore, we will consider one case
in detail in order to illustrate numerically the possibility
of the persistence of the cannibalistic population.

The case M =70 and P ==4 is investigated numerically
as a representative case of large M. Since the zero solu-
tion of the cannibalism model (1) is always stable, the
4-cycles seen in Fig. 3b cannot bifurcate from zero. In order
to “unfold” a larger picture of these dynamics, consider the
4-periodic resource defined, over the first period, by

(1) = m o<l
= M ifl<i£3

¢. Juveniles as a function of time. The attractor is a 4-cycle. In this time

where 0 <m <M. We now consider the attractor in
¢-mi-x space with M =70 and P=4.

Figure 5 shows the equilibria of the 4th composite map
in c-m-x space; this 18 one of the range values of the
4-cycle attractor for the cannibalism model (1) and is used
for graphical convenience. In the ¢ = 0 plane, a positive
branch of 4-cycles bifurcates supercritically with respect
to /m at a critical value m,, & 0.2. As ¢ is increased, the
branch develops a kink in which it bends back to the left,
then back to the right. Further increases in ¢ cause the
leftmost bend to advance further to the left, until for
¢ =045 it finally crosses through the m =0 plane. The
upper part of the bend is stable; hence stable 4-cycles exist
at m=0 for sufficiently lnrge ¢, Note that the stable
4-cycles also exist {for sufficiently large ¢) at small values
of m < m,, for which the noncannibals cannot survive.

Thus, when m is less than a positive critical value m.,,,
the noncannibals cannot survive, while the cannibals may
survive for some values of M, P, and ¢. In particular, in the
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FIG. 4. a. The juvenile component of the attractor as a function of A/ when P = 3. Locally stable 5-cycie solutions exist for sufficiently large M

but the zero solution is always locally stable. In this simulationa =1, e =04, £ =08,d=03,p=1, P=5 b, The juvenile component of the attractor
as a function of ¢ when P =5, Locally stable S-cycle solutions (see Fig. 4¢) exist for sufficiently large ¢ but the zero solution is always locally stable.
In this simulation g= 1, B=208, d=03, p=1, P=5 M=15 ¢ Juveniles as a function of tirne. The attractor is a S-cycle. In this time series a= [,
e=04, f=084d=03,p=1, P=35 M=30. d. Thejuvenile component of the attractor as a function of A when P =6, Locally stable 6-cycle solu-

tions exist for sufficiently jarge A but the zero selution is always locally stable. In this simutation =1, ¢ =04, f=08,d=03,p=1, P=6.

00 4

FI1G. 5. The juvenile component of the attractor of the 4th com-
posite map as a function of ¢ and s when P =4 and M = 70, This is one
of the branches of the 4-cycle selution. See text for description, In this
simulation a=1, f=08,d=03, p=1, P=4, M=T70.

most catastrophic case m =0, the noncannibal population
goes extinet in finite time, while the cannibal population
can survive.

Further simulations for different parameter values and
for different values of P and M have exhibited similar
results and conclusions.

5. CONCLUSION

The van den Bosch et al. concept of mean yield is a key
factor m the dynamics of cannibalistic populations.
When the cannibalized individuals have access to a
resource which is not available to the cannibals, the mean
yield can exceed one at fow {adult) resource levels, When
there is no differentiation between the resource of the
cannibals and the cannibalized individuals, however, the
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mean yieid is less than one at low resource levels. In the
van den Bosch et o/, and Cushing models, cannibalism is
beneficial only when the mean yield exceeds one. In this
paper it has been shown that under certain circumstances
cannibalism can be beneficial even when the mean yield
is iess than one.

Specifically, a variation (1) of Cushing’s model was
analyzed under the assumptions that (1) the mean yield
is fess than one; and (2) the resource dips to zero for two
consecutive time intervals:

0 ifo<egl
p(”‘{M if > 1
In this case the noncannibal population goes extinct in
finite time while the cannibal population is uniformly
persistent.
When the resource fluctuates P-periodically with

(o fm i osis]
PO ifl<igP—1

0 < m< M, simulations suggest that there exist stable,
positive P-periodic solutions to the cannibalisme model
(1) if M is sufficiently large, and, if m is also large enough,
to the cannibalism model (2) as well. However, when m
is less than some positive critical value m,,, the noncan-
nibals cannot survive, while the cannibals may survive
for some values of M, P, and ¢ In particular, if m =0, the
noncannibal population goes extinct in finite time, while
the cannibal population can survive.

A number of points can be made about the case m = 0.
First, there is an inverse relationship between the period
P and the maximal resource level M. The smaller the
level M of high resource, the longer the duration of high
resource must be in order to allow the cannibal popula-
tion to exist. Second, P-periodic resource fluctuations
give rise to P-periodic solutions of the cannibalism
model. Third, the cannibal population can survive only if
the population size is sufficiently large (since the trivial
solution is always locally stable), if the cannibalism coef-
ficient ¢ 1s sufficiently large, and if the mean yield is not
too small. Fourth, catastrophic collapse may oceur if ¢ is
too small, or if the initial population size is too small.

6. APPENDIX

Proof of Remark 1. The linearization at zero of (2)
has eigenvalues
A= i\ﬁ,
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and hence the trivial solution is stable when r <1 and
unstable when # > 1.
Let r< 1. Since

X(1+2) = re =4 *Ox(1) < x(1)

Wt +2) =re 0yt < p(1),

the sequences {x{2k)}{, and {p(2K)} 7., are de-
creasing and hence approach nonnegative limits Xand ¥
If either of X or ¥ were positive, then one of the equations

{=re ¥

would hold, which is impossible. Thus, X = Y =10. The
same argument holds for the sequences {x(2k+ 1}} 7.,
and {p(2k+1)};°,, and so the trivial solution is
globally stable,

The equilibria equations for x, y % 0 are equivalent to

l=re™®
y=px

from which follow the existence and uniqueness of the
positive equilibrium for r> 1. The linearization of (2) at
the positive equilibrium has eigenvalues

A=+ /l—Inr,

and hence the equilibrium is locally asymptoticaily stable
when | <r<e® §
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